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SUMMARY
Plastid-nucleus genome coordination is crucial for plastid activity, but the mechanisms remain unclear. By
treating Arabidopsis plants with the organellar genome-damaging agent ciprofloxacin, we found that plastid
genome instability can alter endoreplication and the cell cycle. Similar results are observed in the plastid
genome instability mutants of reca1why1why3. Cell division and embryo development are disturbed in the
reca1why1why3mutant. Notably, SMR5 and SMR7 genes, which encode cell-cycle kinase inhibitors, are up-
regulated in plastid genome instability plants, and the mutation of SMR7 can restore the endoreplication and
growth phenotype of reca1why1why3 plants. Furthermore, we establish that the DNA damage response tran-
scription factor SOG1 mediates the alteration of endoreplication and cell cycle triggered by plastid genome
instability. Finally, we demonstrate that reactive oxygen species produced in plastids are important for
plastid-nucleus genome coordination. Our findings uncover a molecular mechanism for the coordination
of plastid and nuclear genomes during plant growth and development.
INTRODUCTION

Proper genome function depends on the maintenance of

genome integrity (Aguilera and Garcı́a-Muse, 2013). Plant plas-

tids are semi-autonomous organelles containing their own ge-

nomes, encoding several proteins that are necessary for the for-

mation of functional photosynthetic and metabolic complexes

(Green, 2011). Plastid genome stability is vital for plastid function

and, consequently, plant growth and development (Kimura and

Sakaguchi, 2006; Oldenburg and Bendich, 2015). However,

plastids are extremely sensitive to certain environmental condi-

tions and stimuli that can damage their genome stability; in

particular, double-strand breaks (DSBs) are considered the

most threatening to genome instability. Spontaneously, the

plastid genome-damaging agent ciprofloxacin (CIP) is a gyrase

inhibitor that can also produce organellar DSBs (Evans-Roberts

et al., 2016), which induce severe plastid DNA (ptDNA) rear-

rangements if improperly repaired (Odom et al., 2008). However,

our understanding of how plants maintain plastid genome stabil-

ity is limited. Several factors involved in the maintenance of

plastid genome stability have been identified inArabidopsis thali-

ana: the single-stranded DNA-binding proteinsWHIRLY (WHY) 1

and WHY3 are targeted to plastids and protect the plastid

genome against rearrangements (Maréchal et al., 2009); chloro-

plast RECA1 is key for homologous recombination (HR) and
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maintenance of structural integrity of the plastid genome (Rowan

et al., 2010); and the type I polymerases, PolIB, perform ptDNA

replication and repair in Arabidopsis (Parent et al., 2011). The

plastid genome instability in the Arabidopsis polibwhy1why3 tri-

ple mutant leads to the generation of reactive oxygen species

(ROS) and induces stress-related nuclear genetic reprogram-

ming, which correlates with yellow-variegated leaves and envi-

ronmental stress adaption (Lepage et al., 2013). The reca1why1-

why3 triple mutant, which is characterized by white variegation

and a severe growth-retardation phenotype, accumulates

much more short-range ptDNA rearrangements than the wild

type (WT), leading to plastid genomic instability (Zampini et al.,

2015), but the relationship between plastid genomic instability

and plant growth remains unclear.

More than 95% of plastid proteins are encoded by the nuclear

genome (Green, 2011), which contains all of the genetic informa-

tion required for plastid function and plant survival (Woodson

and Chory, 2008). The maintenance of nuclear genome integrity

is fundamental for nuclear genome function. However, genome

instability may result from failures at different steps of the DNA

cycle (from replication to segregation) and failed or improper

repair of DNA damage (Aguilera and Garcı́a-Muse, 2013; San-

chez et al., 2012). Plants have developed an elaborate regulatory

mechanism to ensure the integrity of the nuclear genome, which

is required for normal growth and development (Hu et al., 2016).
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Accurate control of the cell-cycle phases (G1, S, G2, and mitotic

[M] phases) and critical checkpoints at G1/S, G2/M phase tran-

sition points, and metaphase (spindle assembly checkpoint

[SAC]) are important for ensuring that cell division generates

two identical daughter cells (De Veylder et al., 2003; Inzé and

De Veylder, 2006). The checkpoint at the G1/S transition ensures

that sufficiently raw materials are available for the completion of

DNA replication, while the G2/M transition checkpoint ensures

that cells do not initiate mitosis before repairing damaged

DNA, and the SAC ensures the equal segregation of chromo-

somes to the daughter cells (De Veylder et al., 2003; Inzé and

De Veylder, 2006). Cell-cycle progression is driven by conserved

heterodimeric kinases, comprising regulatory cyclin subunits

and catalytic cyclin-dependent kinase (CDK) subunits; these

heterodimeric kinases are known as CDK-cyclin complexes.

Plants possess different classes of CDKs and cyclins to regulate

the transition from one cell-cycle phase to the next (De Veylder

et al., 2003; Inzé and De Veylder, 2006). For example, A-type cy-

clins (CYCA) and B-type cyclins (CYCB) have a function during

G1/M and G2/M phase transitions, respectively (Inzé and De

Veylder, 2006; Gutierrez, 2009; Boruc et al., 2010).

Exogenous environmental factors and endogenous metabolic

processes damage plant genome DNA and can lead to genomic

instability. Plants have evolved a DNA damage response mech-

anism when DNA strands break to ensure genome integrity

(Aguilera and Garcı́a-Muse, 2013; Hu et al., 2016). When DNA

damage is beyond repair, plants initiate cell death to avoid trans-

mitting damaged DNA to the next generation. However, if DNA

damage is minimal, then plants activate cell-cycle arrest, endor-

eplication, and DNA damage repair to ensure genome integrity.

Cell-cycle arrest at the main surveillance checkpoints, G1/S

and G2/M, allows cells to take action to tackle DNA damage

(Hu et al., 2016). During endoreplication, DNA replication con-

tinues without cell division to ensure plant survival (De Veylder

et al., 2011; Breuer et al., 2014). DNA repair mechanisms include

mismatch repair, excision repair, and repair of DSBs via HR and

nonhomologous end joining (NHEJ), and various DSB repair

mechanisms have been reported in plants (Hu et al., 2016). A

set of specific proteins regulate the cell cycle in response to

DNA damage. For example, the NAC domain family transcription

factor SOG1, a plant functional analog of animal p53, controls

the expression of genes responsible for cell-cycle regulation,

including cell-cycle inhibition and DNA damage responses

(Ogita et al., 2018; Yoshiyama et al., 2009, 2016, 2017). The acti-

vated SOG1 directly or indirectly regulates hundreds of genes

and induces a broad cascade of transcriptional responses,

which control cell-cycle regulation, endoreplication, DNA repair,

and cell death to ensure genome integrity (Yoshiyama et al.,

2017; Adachi et al., 2011).

Given the endosymbiotic origins of plastids, the coordination

of nuclear and plastid genomes is essential for ensuring eukary-

otic cell integrity (Kobayashi et al., 2009). Research into both

anterograde (nucleus to plastid) and retrograde (plastid to nu-

cleus) genome communication mechanisms has focused on

the coordination of gene expression between nuclear and plastid

genomes, which is important for plastid function and plant

growth and survival (Woodson and Chory, 2008; Chan et al.,

2016). A relatively constant nuclear:plastid genome ratio is
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required for normal plant growth and development, so coordina-

tion of the genome state between the nucleus and plastids is

required for plant survival (Golczyk et al., 2014; Li et al., 2006).

However, how plants coordinate the genome-stability state be-

tween plastids and the nucleus remains unknown.

In this study, we explored the relationship between the state of

the plastid and nuclear genomes. We found that plastid genome

instability affects the status of the nuclear genome mediated by

SOG1 through activating genes involved in enhancing endorepli-

cation and cell-cycle regulation. We further revealed that plastid-

nucleus genome communication involves increased ROS, thus

controlling plant growth and development.

RESULTS

Plastid Genome Instability Modulates Endoreplication
and Cell Cycle
To explore the relationship of genome status between plastid

and nucleus, we introduce two plastid genome-damaging

agents, including novobiocin (NOV), a gyrase inhibitor that

does not induce DNA breaks or ptDNA rearrangements (Hardy

and Cozzarelli, 2003), and CIP, another gyrase inhibitor that pro-

duces organellar DSBs, which induce severe ptDNA rearrange-

ments (Evans-Roberts et al., 2016), leading to plastid genome

instability (Figure 1A).

DNA content is a key characteristic for endoreplication (Bre-

uer et al., 2014; De Veylder et al., 2011), and the expression of

the cell-cycle marker gene CYCB1;1 is important to the cell cy-

cle in plants (Hemerly et al., 1992; Shultz et al., 2009). We

treated WT plants with different concentrations of NOV, then

measured the nuclear DNA content (C value). The results

showed that plants did not exhibit an obvious alteration of nu-

clear DNA content (Figures 1B, 1C, S1A, and S1B). Further-

more, we monitored the expression of CYCB1;1 in NOV-treated

plants, and the results showed that the expression of CYCB1;1

is also not affected (Figure 1D). When plants were treated with

CIP of different concentrations, we found that the cell ploidy

enhanced gradually with the increase in CIP concentration (Fig-

ures 1B, 1C, S1C, and S1D); especially when the concentration

of CIP is 0.75 and 1 mM, these plants displayed decreased 2C

and 4C DNA content, increased 8C and 16C DNA content, and

even a 32C nuclear DNA content. Moreover, the alteration of

cell ploidy of 1 mM is more significant (Figures 1E and 1F).

The expression of CYCB1;1 in a 1-mM CIP-treated plant is

also significantly upregulated (Figure 1G). These results sug-

gest that plastid genome instability with severe ptDNA rear-

rangements modulates endoreplication and cell-cycle progres-

sion in plants.

Endoreplication and Cell Cycle Are Altered in the
reca1why1why3 Mutant
To ensure the effect of plastid genome instability on endoreplica-

tion and cell-cycle progression, we used the Arabidopsis triple

mutant reca1why1why3, which also accumulates many more

short-range ptDNA rearrangements, which exhibit plastid

genome instability, to further evaluate the results obtained in

CIP-treated plants (Zampini et al., 2015; Figure 2A). We used

five pairs of primers to examine ptDNA rearrangements and a
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Figure 1. Analysis of the Nuclear DNA Con-

tent and Expression of CYCB1;1 in Novobi-

ocin (NOV)- or Ciprofloxacin (CIP)-Treated

Plants

(A) Schematic representation of the function

mechanism and consequence of NOV or CIP.

Under the normal condition (no drug treated), the

plastid genome replication is normal; under the

NOV condition, the replication of ptDNA stop; and

under the CIP condition, the replication of ptDNA

stop and ptDNA rearrangements increased.

(B and C) Ploidy distribution (B) and nuclear DNA

content (C) of 14-day-old WT or WT plants treated

with NOV (10, 15, 50, and 100 mM). Three biological

replicates were performed.

(D) Expression analysis of CYCB1;1 in 14-day-old

WT or WT treated with different concentrations of

NOV. Three independent biological replicates

were performed.

(E and F) Ploidy distribution (E) and nuclear DNA

content (F) of 14-day-old WT or WT plants treated

with CIP (0.25, 0.5, 0.75, and 1 mM). Three inde-

pendent biological replicates were performed.

(G) Expression analysis of CYCB1;1 in 14-day-old

WT or WT treated with different concentrations of

CIP. The transcript level of each gene was

normalized relative to ACTIN2 (At3g18780).

The data in (C), (D), (F), and (G) are the means ±

SEs (n = 3). Three biological replicates were per-

formed (**p < 0.01; Student’s t test).
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next-generation sequencing approach (Figure S2), referencing

the previous report (Zampini et al., 2015), to ensure ptDNA insta-

bility in the reca1why1why3 mutant. We found that nuclear DNA

content in reca1why1why3 mutants was similar to that in 1-mM

CIP-treated plants (Figures 1E, 1F, 2B, and 2C) and that the

expression ofCYCB1;1 is also significantly increased (Figure 2D).

These results further ensured that plastid genome instability has

an effect on endoreplication and cell-cycle progression.

The onset of endoreplication could be activated either by

inherent developmental signals or DNA stress mostly caused
C

by genotoxic drugs (Fox and Duronio,

2013). However, under DNA stress condi-

tions, cells induce DNA damage re-

sponses, which contain the activation of

endoreplication to maintain the integrity

of the nuclear genome (Hu et al., 2016).

To determine whether the DNA damage

responses occurred in the reca1why1-

why3 mutant, first, we ran the alkaline

comet assay to examine nuclear DNA

strand breaks in reca1why1why3 mu-

tants; the H2O2-treated plants were

used as a control. There were no differ-

ences between the plastid genome insta-

bility plants and WT plants in this assay

(Figure 2E), suggesting that there is no

obvious DNA strand break in the reca1-

why1why3 mutant. Second, we moni-

tored the expression of several genes
involved in various DNA repair pathways, including NHEJ

(Ku70, PARP2C, and XRCC4) and HR (RAD51 and BRCA1) (Ki-

mura and Sakaguchi, 2006). There was almost no difference in

the expression of these genes between mutants and WT plants

(Figure 2F). Third, trypan blue staining to detect cell death in

leaves showed no differences between mutants and WT plants

(Figure 2G). These results suggest that the plastid genome insta-

bility does not directly damage nuclear DNA and trigger DNA

repair, as well as cell death; instead, it affects nuclear genome

status by disturbing endoreplication and cell-cycle progression.
ell Reports 32, 108019, August 11, 2020 3
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Figure 2. Nuclear DNA Content and Expression of CYCB1;1 Are Altered in reca1why1why3 Mutants

(A) Schematic representation of the function of plastid genome stability factors and the consequence of reca1why1why3mutants. In WT plants, the replication of

plastid genome is normal; in reca1why1why3 mutants, ptDNA rearrangements increased.

(B and C) Ploidy distribution (B) and nuclear DNA content (C) in 14-day-oldWT and reca1why1why3 plants. Three independent biological replicates were performed.

(D) Expression analysis of CYCB1;1 in 14-day-old WT and reca1why1why3 mutants. The transcript level of CYCB1;1 was normalized relative to ACTIN2

(At3g18780).

(E) Comet assay analysis of DNA damage status in 14-day-old WT, reca1why1why3-, or H2O2-treated plants. Scale bar, 50 mm. The statistical data for DNA in the

comet tail at the right are means ± SEs (n = 60) from 3 independent biological experiments (***p < 0.001; Student’s t test).

(F) qPCR analysis genes involved in various DNA repair pathways of 7-day-old plants. The H2O2-treated plants were used as the control.

(G) Representative photographs of leaves from 25-day-old plants grown under normal conditions and stained with trypan blue. Scale bar, 500 mm. Three bio-

logical replicates were performed.

The data in (C), (D), and (F) represent means ± SEs (n = 3) of 3 biological replicates, (*p < 0.05, **p < 0.01; ***p < 0.001; Student’s t test).
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Figure 3. The Development of Leaf Cells and Embryo Development Is Affected in reca1why1why3 Mutants

(A) Rosette leaves of WT and mutant plants ranging from the oldest (left) to the youngest (right). Scale bar, 0.5 cm.

(B) Scanning electron microscopy analysis of epidermal cells on the adaxial surface of fully differentiated leaves of 25-day-old WT and reca1why1why3mutants.

Scale bars, 50 mm.

(C and D) Comparison of leaf area (C) and epidermal cell area (D) between WT and mutants. The data represent means ± SEs (n = 10–20 leaves) (**p < 0.01,***p <

0.001; Student’s t test).

(E) Seeds of WT and mutants. Scale bar, 0.2 cm.

(F) Differential interference contrast (DIC) microscopy analysis of seeds of WT and mutants. Scale bar, 50 mm. At least 3 biological replicates were performed for

each experiment.

(G) Seed fertility of WT and reca1why1why3 plants. The data are means ± SEs (n = 140–290 siliques) of 3 biological replicates (***p < 0.001; Student’s t test).

(H) Comparison of 1,000-grain weight for WT and reca1why1why3 mutants. The data represent means ± SEs (n = 10) of 3 biological replicates (*p < 0.05;

Student’s t test).
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Cell Division and Embryo Development Are Disturbed in
the reca1why1why3 Mutant
To explore how plastid genome instability modulates the endor-

eplication and cell cycle, we analyzed the growth and develop-

ment of the reca1why1why3 mutants. The mutants display a

dwarf phenotype; the average leaf size in reca1why1why3 mu-

tants was 3.01-fold smaller than that in WT plants (Figures 3A

and 3C). However, the average leaf epidermal cell area was

1.46-fold larger in the reca1why1why3 mutants compared with

that in the WT (Figures 3B and 3D). This suggested that cell divi-

sion was severely inhibited in reca1why1why3 plants.

In Arabidopsis, several cell-cycle-related mutants exhibit

defective embryo development, even causing embryo lethality

and reduced silique fertility (Domenichini et al., 2012; Ni et al.,

2009). At the reproductive stage, reca1why1why3 mutant

siliques contained a large number of white ovules, in contrast

to the green ovules of the WT (Figure 3E). We examined ovule

development and found that reca1why1why3 mutant embryos

displayed an abnormal shape at the late heart stage and late
torpedo stage compared with the WT embryo (Figure 3F). More-

over, mutant plants exhibited lower fertility than WT plants, with

significantly fewer seeds per silique in the mutant (mean value of

26.0) than in the WT (mean value of 48.7) (Figure 3G). In addition,

the 1,000-grain weight was lower in reca1why1why3 than that in

WT plants (Figure 3H). These results indicate that embryo devel-

opment is disturbed in reca1why1why3mutants. In all, abnormal

development of leaves and embryos in the reca1why1why3

mutant was likely caused by defects in cell division and the cell

cycle, which further supported that plastid genome instability

modulates endoreplication and cell-cycle progression.

Cell-Cycle Kinase Inhibitors SMR5 and SMR7 Are
Required for Regulation of Endoreplication and Cell
Cycle by Plastid Genome Instability
To understand the molecular mechanisms underlying the

endoreplication and cell-cycle progression in plastid genome

instability plants, we performed reverse-transcriptase-quantita-

tive PCR (RT-qPCR) to determine the expression levels of
Cell Reports 32, 108019, August 11, 2020 5
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Figure 4. Expression of Cell Cycle Genes Is

Enhanced in reca1why1why3 Mutants

(A) Expression analysis of SMR5 and SMR7 in WT,

reca1why1why3 mutants, and CIP-treated plants.

The transcript level of each gene was normalized

relative to ACTIN2 (At3g18780). The data repre-

sent means ± SEs (n = 3) of 3 biological replicates.

(B–E) The phenotype (B), rosette size (C), ploidy

distribution (D), and nuclear DNA content (E) of 25-

day-old WT, smr7, reca1why1why3, and the

quadruple of smr7reca1why1why3 plants. The

quadruple plants were isolated from an F4 segre-

gating population generated by crossing reca1-

why1why3 with smr7. The graph of (C) represent

means ± SEs (n = 30). (B) Scale bar, 2 cm. Three

biological replicates were performed for each

experiment. Asterisks indicate significant differ-

ences in (A) and (C) (*p < 0.05; **p < 0.01; ***p <

0.001; Student’s t test).
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cell-cycle-related marker genes during different phases: G1

(CYCD3;3 and SMR6), G1/S (KRP2, E2FA, and FBL17), S

(CYCD3;1, CYCD5;1, CDT1A, ASF1a, ASF1b, and ETG1), S/G2

(CYCA2;1 and WEE1), and G2/M (SMR5, SMR7, CCS52A1,

and CCS52A2) (Boruc et al., 2010; Gutierrez, 2009). Transcript

levels of the SIAMESE-RELATED kinase inhibitors SMR5 and

SMR7 were significantly increased in reca1why1why3 mutants

and CIP-treated plants (Figure 4A). Genes associated with other

phases were not obviously altered (Figures S3A and S3B). These

results suggested that the alteration of cell-cycle progression in

plastid genome instability plants is probably due to the increased

expression of cell-cycle genes.

To further determine the function of these altered cell-cycle-

related genes in plastid genome instability plants, we crossed

the cell-cycle gene mutant of smr7 with the reca1why1why3

mutant and obtained the quadruple mutant smr7reca1why1-

why3 (Figures 4B, 4C, and S3C). The growth phenotype of the

quadruple mutants was partially recovered to that of the WT

plants (Figures 4B and 4C). The obvious 32C nuclear DNA con-

tent was not seen in these quadruple mutants, and the DNA con-

tent recovered to theWT-like pattern in these quadruple mutants
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(Figures 4D and 4E). These results sug-

gest that high expression levels of

SMR5 and SMR7 are responsible for

enhanced endoreplication and cell-cycle

progression, as well as plant develop-

ment in plastid genome instability

mutants.

To verify the relationship of the endore-

plication and cell cycle with plastid

genome-stability factors, we examined

the expression of cell-cycle-related

marker genes and endoreplication in

reca1-1, why1, and why3 single mutants

(Maréchal et al., 2009; Rowan et al.,

2010). There were no significant differ-

ences in the expression of cell-cycle-

related genes among the single mutants
and WT plants (Figure S4A). Similarly, cell ploidy was the same

in the single mutants (reca1-1, why1, or why3) as it was in WT

plants (Figures S4B and S4C). Thus, it is possible that plastid

genome instability in the single mutants is not severe enough

to cause changes in endoreplication and the cell cycle.

SOG1 Is Important for Activation of Cell-Cycle-Related
Genes by Plastid Genome Instability
The transcription factor of SOG1 directly controls the genes

responsible for cell-cycle regulation, such as CDK inhibitors (Yi

et al., 2014, Ogita et al., 2018). To determine whether the cell-cy-

cle genes CYCB1;1, SMR5, and SMR7 were directly regulated

by SOG1 in plastid genome instability plants, we ruled out differ-

ences in the transcription levels of SOG1 between mutants and

WT plants (Figures S3A and S3B). Next, chromatin immunopre-

cipitation (ChIP) assays, followed by qPCR analyses indicated

that the binding rates of SOG1 with CYCB1;1, SMR5, and

SMR7 were greater in reca1why1why3 mutants (Figure 5A).

Lastly, we treated the sog1 mutants with CIP to mimic the

quadruple sog1reca1why1why3 mutants (Figure S3E). CIP is

used to determine the roles of SOG1 in plastid genome instability
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Figure 5. The Roles of SOG1 in Modulation of

Cell Ploidy and Expression of Cell-Cycle-

Related Genes Triggered by Plastid Genome

Instability

(A) ChIP-qPCR analyzed the binding of SOG1 to the

promoter regions of CYCB1;1, SMR5, and SMR7 in

reca1why1why3 mutants compared to WT plants.

The data represent means ± SEs (n = 3); 3 biological

replicates were performed.

(B and C) Ploidy distribution (B) and nuclear DNA

content (C) of 14-day-oldWT, sog1-1, and sog1-101

plants treated with or without CIP. Three biological

replicates were performed.

(D) Expression analysis of CYCB1;1 and SMR7 in

14-day-old WT, sog1-1, and sog1-101 plants

treated with or without CIP. The transcript level of

each gene was normalized relative to ACTIN2

(At3g18780). The data represent means ± SEs

(n = 3) of 3 biological replicates.

For (A) and (D), asterisks indicate significant differ-

ences (*p < 0.05; **p < 0.01; Student’s t test).
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plants. The result showed that the decreased 2C and 4C DNA

content and the increased 8C, 16C, and 32C nuclear DNA con-

tent were recovered in sog1 mutants compared with Col-0 after

CIP treatment. The high expression of these cell-cycle genes

induced by treatment with CIP was suppressed in sog1mutants

(Figures 5B–5D). These results suggest that SOG1 plays vital

roles in regulating endoreplication and the expression of cell-cy-

cle genes in reca1why1why3 mutants.

ROS Play Roles in Communication of Plastid Genome
Instability with Endoreplication and Cell Cycle
We investigated whether nuclear function in the reca1why1why3

mutant was altered through plastid retrograde signaling. Chloro-

phyll is synthesized via the tetrapyrrole pathway, and the interme-

diates of tetrapyrrole biosynthesis are thought to participate in

plastid-nucleus communication in both Chlamydomonas and

plants (Chi et al., 2013; Chan et al., 2016). The total chlorophyll

a and b contents were lower in reca1why1why3 than inWT plants

(Figure S5A). Using the gun5 mutant (GUN5 encodes the H-sub-

unit ofMg-chelatase) (Chan et al., 2016;Woodson et al., 2011), we

examined the expression of cell-cycle-related genes in the CIP-
treated gun5 mutant to determine whether

tetrapyrrole pathway intermediates partici-

pate in plastid-nucleus transmission in

plastid genome instability plants. There

were no differences in the expression of

cell-cycle genes between gun5 and WT

plants treated with or without CIP (Fig-

ure S5B), suggesting that tetrapyrrole

pathway intermediates are not involved in

plastid-to-nucleus signal transmission in

plastid genome instability plants.

Notably, ROS can act as important

signaling messengers, which play impor-

tant roles in many biotic and abiotic stress

responses (Chi et al., 2013; Chan et al.,

2016). To explore whether the ROS play a
role in plastid genome instability plants, we determined whether

ROS are induced in reca1why1why3mutants. Nitro blue tetrazo-

lium (NBT) staining for O2
� and diaminobenzidine (DAB) staining

for H2O2 in growth light (GL, 100 mmol photons m�2 s�1) condi-

tions of triple mutant andWT plants demonstrated greater accu-

mulations of ROS in reca1why1why3 mutants (Figure 6A). We

then detected the subcellular localization of ROS by the fluores-

cence dye staining of CM-H2DCFDA. The result showed that the

ROS colocalized with a plastid nucleoid protein, PEND, partially

in the reca1why1why3 mutants and CIP-treated plants (Tera-

sawa and Sato, 2005; Wang et al., 2014; Figure S5C), which sug-

gested that ROS mostly accumulated in the plastids of plastid

genome instability plants.

Plants depend on light energy for photosynthesis, but excess

light can cause oxidative damage and produce ROS, which can

damage the photosystem conversely to inhibit photosynthesis

(Rossel, et al., 2007; Li et al., 2009; Roach and Krieger-Liszkay,

2014). We checked the light-response curves of the photo-

system II (PSII) quantum yield (FPSII) and the electron transport

rate (ETR) in reca1why1why3 plants to determine the photosyn-

thetic activity under the GL condition. When actinic light intensity
Cell Reports 32, 108019, August 11, 2020 7
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Figure 6. Production of Reactive Oxygen Species (ROS) in reca1why1why3Mutant Affects theNuclear DNAContents and Expression of Cell-

Cycle-Related Genes

(A) NBT staining (left 2 panels) for O2� and DAB staining (right 2 panels) for H2O2 in 25-day-old WT and reca1why1why3 mutant plants grown under GL and LL

conditions (scale bars: GL, 0.5 cm; LL, 500 mm). Two additional independent biological replicates were performed with similar results.

(B) The Fv/Fm and ETR in 25-day-old WT and reca1why1why3 plants grown under GL and LL conditions. Five biological replicates were performed.

(C) ptDNA rearrangements in 25-day-old WT and reca1why1why3 plants grown under GL and LL conditions; the red asterisks indicate the increased ptDNA

rearrangements in reca1why1why3 plants. The red and blue arrows represent DNAmarker sizes of 2,000 and 750 bp, respectively. Three independent biological

replicates were performed, and irrelevant lanes between GL and LL from 1 gel are eliminated.

(D–G) Analysis of ploidy distribution (D–F) and nuclear DNA content (G) in 25-day-old reca1why1why3 mutant and WT plants under GL (D) or LL (E), or ascorbic

acid-treated plants (F). Three independent biological replicates were performed, with similar results.

(H) Expression of CYCB1;1 and SMR7 in 25-day-old reca1why1why3mutants andWT plants under LL conditions or 14-day-old reca1why1why3mutant and WT

seedlings grown on plates with increasing concentrations of ascorbic acid (a ROS quencher, 0.5 and 2mM). The data representmeans ±SEs (n = 3) of 3 biological

replicates. Asterisks indicate significant differences (*p < 0.05; **p < 0.01; ***p < 0.001; Student’s t test).
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increased, the FPSII and ETR values appeared to be lower in re-

ca1why1why3 plants than that in WT plants (Figure S6A), indi-

cating that PET is affected in the reca1why1why3 mutant. NBT

and DAB staining of reca1why1why3mutants andWT plants un-

der low light (LL, 10 mmol photons m�2 s�1) conditions showed

that the excess of ROS accumulation in reca1why1why3 mu-

tants is decreased greatly in contrast to GL conditions (Fig-

ure 6A). We then examined the photosynthetic efficiency of re-

ca1why1why3 in both GL and LL conditions and measured the
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maximum photochemical efficiency of PSII (Fv/Fm) and ETR,

the minimum fluorescence (Fo), the maximum fluorescence

(Fm), nonphotochemical quenching (NPQ), and photochemical

quenching (qP) (Figures 6B, S6B, and S6C). The values of Fv/

Fm and ETR were lower in the mutant than in WT under GL con-

ditions, but under LL conditions, the difference in Fv/Fm and ETR

between reca1why1why3 and WT plants diminished (Figure 6B).

We further examined the ptDNA rearrangements in both light

conditions and found that ptDNA rearrangements in
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reca1why1why3 were greatly reduced under LL conditions

compared with that in GL conditions (Figure 6C). Moreover, the

retarded growth phenotype of reca1why1why3 compared with

the WT was alleviated under LL conditions (Figure S6C), indi-

cating that LL can decrease ROS and ptDNA rearrangements,

which alleviate the differences in photosynthetic activity and

plant growth of reca1why1why3 mutants.

To explore the relationship between ROS accumulation and

the altered endoreplication and cell cycle in reca1why1why3,

we examined the DNA contents and expression of cell-cycle

genes under LL conditions. Results showed the high DNA con-

tents and upregulation of the cell-cycle genes of the reca1why1-

why3 mutant were diminished under LL conditions (Figures 6D,

6E, 6G, and 6H). To further confirm this, we treated reca1why1-

why3mutants with ascorbic acid, a ROS quencher (Petrillo et al.,

2014). Similarly, cell ploidy and the expression of cell-cycle

genes in reca1why1why3 mutants were almost reduced to the

level observed in the WT at 2 mM ascorbic acid (Figures 6F–

6H), supporting the idea that ROS play roles in the enhanced

endoreplication and expression of cell-cycle-related genes in

reca1why1why3 mutants.

To examine whether reduced photosynthesis in reca1why1-

why3mutants contributes to endoreplication and cell-cycle pro-

gression in the nucleus, we introduced a photosynthesis-de-

fected mutant lpe1-3, which specifically affects PSII activity

drastically (Jin et al., 2018), as a control. As we can see, the FPSII

and ETR photosynthetic efficiency in the lpe1-3 mutant were

severely reduced (Figures S6A and S6B). The lpe1-3 mutants

exhibit severe growth retardation, which is similar in the pheno-

type of reca1why1why3 mutants, so we measured leaf size, leaf

cell area, and cell number in the mutants of lpe1-3. The average

leaf size was 5.52-fold smaller in lpe1-3 plants than in the WT,

and the average cell area in lpe1-3 plants was similar to that in

WT plants (Figure S6D). The cellular cause for reduced leaf

size in lpe1-3 was a reduction in cell number (Figure S6D), sug-

gesting that cell division is not altered in lpe1-3mutants. Further-

more, plant ploidy and expression of cell-cycle genes exhibited

no differences from those inWT (Figures S6E and S6F), suggest-

ing that only the decrease in photosynthesis did not contribute to

endoreplication and cell-cycle progression in the nucleus.

DISCUSSION

The stability of plastid and nuclear genomes and their interaction

or communication is extremely important for plastid function and

plant growth and development. However, coordination between

plastid and nuclear genome status in plants is not well under-

stood. Here, we demonstrated that plastid genome instability

modulates nuclear genome status by modulating endoreplica-

tion and cell-cycle progression (Figure 7).

We provided several lines of evidence to support the notion

that plastid genome instability affects endoreplication and cell-

cycle progression. Plastid genome instability induced by the

plastid genome-damaging agent CIP (Evans-Roberts et al.,

2016) alters endoreplication and the cell cycle (Figure 1). Then,

plastid genome instability mutant reca1why1why3 shows a

similar enhanced cell cycle and endoreplication to CIP-treated

plants, which is supported by abnormal cell division and embryo
development (Figure 3). Furthermore, we did not observe

changes in the cell cycle or endoreplication or the growth defect

phenotype in the plastid genome instability single mutantswhy1,

why3, and reca1-1 (Figure S4; Maréchal et al., 2009; Rowan

et al., 2010). The plastid genome in these single mutants is not

severely damaged, and themain difference between reca1why1-

why3 mutant and single mutants is that the reca1why1why3

mutant accumulates many more short-range ptDNA rearrange-

ments (Zampini et al., 2015). In addition, cell cycle, cell division,

and cell ploidy are not altered in the photosynthesis-defected

mutant lpe1-3 (Figures S6D–S6F), suggesting that only the

decrease in photosynthesis did not contribute to endoreplication

and cell-cycle progression. However, it is also possible that there

is an effect of cell-cycle progression induced by growth and

development on endoreplication due to the phenotype differ-

ence between the reca1why1why3 mutant and WT plants.

In the red alga Cyanidioschyzon merolae, plastid organelle

DNA replication is coordinated with nuclear DNA replication

(NDR) during the G1/S phase transition through the Mg-protoIX

signal, which is conserved in higher plants, as revealed by

analyzing plant cell suspension cultures (Kobayashi et al.,

2009, 2011). A previous study reported that chloroplast dysfunc-

tion likely influences cell-cycle progression (Hudik et al., 2014),

but the molecular mechanism is unclear. Our study found that

the expression of SMR5 and SMR7 is increased in plastid

genome instability plants. Mutation of the cell-cycle kinase inhib-

itor in reca1why1why3 partially restores the changed cell divi-

sion, endoreplication, and rosette size triggered by plastid

genome instability (Figure 4), which is consistent with their func-

tion in previous reports (Kumar et al., 2015; Pedroza-Garcı́a.,

2017; Yi et al., 2014; Churchman et al., 2006), suggesting that

SMR5 and SMR7 is required for the alteration of endoreplication

and cell cycle triggered by plastid genome instability. The cell-

cycle genes SMR5 and SMR7 can inhibit the activity of CDKs

(such as CDKB, which is required for G2/M phase and regulates

the transition from the mitotic cell cycle to endoreplication) (Ku-

mar et al., 2015; Pedroza-Garcı́a, 2017; Churchman et al., 2006).

The expression of G2/M phase-specific genes CDKB1;2 was

significantly decreased, and the gene expression for endorepli-

cation, including CCS52A2, SIM, and SMR1, was slightly

increased in CIP-treated plants (Figure S1E), further supporting

that endoreplication is increased in plastid genome instability

plants. Therefore, it is possible that plastid genome instability

alters the cell cycle by disturbing G2/M phase to promote the

endoreplication. In addition, a previous study reported that

SMR genes can be activated in the DNA stress response (Yi

et al., 2014). CDKB1 and CYCB1 mediate HR during DNA dam-

age and form active complexes that can phosphorylate RAD51

in vitro (Weimer et al., 2016). Expression of the cell-cycle gene

CYCB1;1 was obviously increased; however, the magnitude of

the increased expression of DNA repair marker genes RAD51

and KU70 was small in reca1why1why3 mutants (1.08-fold and

1.21-fold, respectively) (Figures 2D and 2F), compared with pre-

vious reports (�2- to 50-fold, depending on the mutants or DNA

stress treatment) (Domenichini et al., 2012; Horvath et al., 2017).

Moreover, the alkaline comet assay revealed no obvious nuclear

DNA strand breaks in reca1why1why3 plants, implying that the

effect of plastid genome instability on nuclear DNA damage is
Cell Reports 32, 108019, August 11, 2020 9
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mild (Figure 2E). Previous studies reported that the activation of

CYCB1;1 could also be a result of the longer arrest of cells in

G2/M phase (Ni et al., 2009; Hudik et al., 2014; Yin et al.,

2009). Thus, it is possible that higher expression levels of

CYCB1;1 in plastid genome instability plants also result from

the longer arrest of cells in the G2/M phase, which is supported

by the higher expression of SMR7 and recovery of the cell cycle

by SMR deficiency in reca1why1why3 plants (Figures 1G, 2D,

and 4). We speculate that the high expression levels of SMR5

and SMR7 genes contribute to the prolongation of the cell cycle

of G2/M phase, and promote endoreplication instead of cell divi-

sion in the reca1why1why3 mutant.

Notably, the transcription factor of SOG1 is required for the

expression of cell-cycle-related genes in different conditions

(Yi et al., 2014, Ogita et al., 2018). This study showed that the in-

crease in cell-cycle-related genes, including SMR5, SMR7, and

CYCB1;1 in the reca1why1why3 mutant, also depends on

SOG1 (Figure 5). However, in CIP-treated sog1 plants, the defi-

ciency of SOG1 did not fully complement the DNA ploidy or

the expression levels of CYCB1;1 and SMR7 to those of the

WT (Figures 5B–5D), suggesting that there are perhaps other

transcription factors with functions similar to SOG1. Previous

studies reported that DNA stress-inducing conditions promote

the phosphorylation of SOG1, and the phosphorylated SOG1 ac-

tivates various responses to DNA damage, such as altering the
10 Cell Reports 32, 108019, August 11, 2020
expression of cell-cycle genes to modulate cell-cycle progres-

sion (Chen et al., 2019; Yoshiyama, 2016; Yoshiyama et al.,

2017). Our results suggest that SOG1 can also mediate the

signaling from plastid genome instability to regulate the expres-

sion of cell-cycle genes (Figure 5). Previous studies reported that

the activation of SOG1 is mediated by two kinases, ataxia-telan-

giectasia mutated (ATM) and ATM- and Rad3-related (ATR),

which is in response to ROS in the nucleus (Yoshiyama et al.,

2009, 2013; Sjogren et al., 2015). We further found that plastid

genome instability promotes ROS production in plastids (Figures

6A–6C), combined with previous studies (Hudik et al., 2014; Pe-

droza-Garcı́a et al., 2016), suggesting that SOG1 probably can

also sense the signal of plastid genome instability through the

ROS, besides DNA damage in the nucleus.

Traditional plastid retrograde signals originate from plastids,

including intermediates of tetrapyrrole biosynthesis, PGE, the

redox state, ROS, and some metabolites (Chi et al., 2013;

Chan et al., 2016). In addition, defects in plastid protein import

(Kakizaki et al., 2009), plastid division (�Simková et al., 2012),

and tocopherols in plastids (Fang et al., 2018) suggest that

more plastid functions may initiate plastid-to-nucleus retrograde

signaling. Our study suggests that the ptDNA rearrangements

act as a signal source associated with ROS accumulation, which

modulates endoreplication and cell-cycle progression. The pho-

todamage-induced ROS burst aggregates this process (Figures

6 and S6A–S6C). However, the relationship among ptDNA rear-

rangements, ROS accumulation, and photodamage is compli-

cated. Our results support the idea that ptDNA rearrangements

in the plastid genome instability mutant promote ROS produc-

tion in plastids (Figures 6A–6C), and a previous study supports

this (Lepage et al., 2013). Light stimulates ptDNA replication

(Oldenburg et al., 2006; Zheng et al., 2011) and can also affect

the damage and functional DNA in plastids (Kumar et al., 2014;

Oldenburg and Bendich, 2015). In our study, the ptDNA rear-

rangements of reca1why1why3 are slightly increased compared

with WT under LL conditions, but in GL conditions, this increase

is enhanced (Figure 6C), indicating that light may aggravate

ptDNA rearrangements in plastid genome instability plants.

Both ptDNA rearrangements and ROS accumulation increased

in reca1why1why3 mutant under GL conditions, and a previous

study reported ROS triggered by ROS-inducing agents do not

induce ptDNA rearrangements (Lepage et al., 2013). We specu-

late that under GL conditions, the plastid genome instability of

reca1why1why3 mutant is more sensitive to light and substan-

tially accumulates more ptDNA rearrangements, promoting

more ROS than the WT compared to LL conditions. Photosyn-

thetic activity is reduced in reca1why1why3 under GL conditions

(Figures 6B, S6A, and S6B), but the difference was diminished

between reca1why1why3 and WT under LL conditions (Figures

6B and S6C). It is possible that photodamage in GL can aggre-

gate the ROS burst and ptDNA rearrangements to further reduce

photosynthesis, which induced more ROS accumulation in

plastid genome instability plants (Figure 6). Thus, photodamage

can boost the ROS signal to modulate endoreplication and the

expression of cell-cycle genes in the nucleus, which retard plant

growth and development (Figures 6 and S6). Furthermore, we

observed that a portion of ROS colocalized with a plastid

nucleoid protein, PEND, in plastid genome instability plants
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(Terasawa and Sato, 2005; Wang et al., 2014; Figure S5C), sug-

gesting the possibility that instable ptDNA in nucleoids can lead

to ROS, which may be different from the ROS produced in the

photosystem (Waszczak et al., 2018). However, how the short-

range ptDNA rearrangements of plastid genome instability

induced ROS is not clear and needs further verification.

In Drosophila, mitochondria coordinate cell-cycle progression

via at least two metabolic signals—ROS and AMP—to retard

cell-cycle progression during the G1/S transition (Mandal et al.,

2005; Owusu-Ansah et al., 2008). Due to similar characteristics

of plastids and mitochondria and since they were both derived

from endosymbiosis (Cavalier-Smith, 2013), plastids may use a

mechanism similar to that used by mitochondria to coordinate

cell-cycle progression. Our study supports that ROS signaling

is involved in regulating endoreplication and the cell cycle in re-

ca1why1why3 plants through decreasing ROS by LL or ascorbic

acid treatment (Figures 6 and S6). Therefore, plastid genome

instability plants, at least through the ROS signaling pathway,

whichmodulates endoreplication and the cell cycle, coordinated

plastid genome stability and nuclear genome integrity. This pro-

vides new perspectives on how both the signal originating from

plastid genome instability (perhaps resulting from short-range

ptDNA rearrangements) and the response in the nucleus (coordi-

nation of plastid and nuclear genome stability) enrich plastid

retrograde signaling at the genome level. Our findings demon-

strate that communication between the plastid and nuclear ge-

nomes is important for regulating plant growth and development.
STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead Contact

B Materials Availability

B Data and Code Availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

B Plant Materials and Growth Conditions

d METHOD DETAILS

B Seed per Silique Counts

B Photosynthetic Parameter Measurements and

Pigment Analysis

B In Situ Detection of ROS

B Trypan Blue Staining

B Comet Assay

B qPCR and Detection of DNA Rearrangements by PCR

B Scanning Electron Microscopy

B Differential Interference Contrast Light Microscopy

B Flow Cytometry

B ChIP

d QUANTIFICATION AND STATISTICAL ANALYSIS
SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

celrep.2020.108019.
ACKNOWLEDGMENTS

We thank Professor Normand Brisson (Université de Montréal) for providing
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35S::SOG1-FLAG (pHBT) This paper N/A

35S::PEND-CFP Wang et al., 2014 N/A

Software and Algorithms

Prism 6 GraphPad https://www.graphpad.com/

ImageJ NIH https://imagej.net/Welcome

CASP comet assay software http://casplab.com/ http://casplab.com/
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Hong-Bin

Wang (wanghongbin@gzucm.edu.cn).

Materials Availability
Materials will be provided upon request to Lead Contact.

Data and Code Availability
The sequencing raw data relating to Figure S2B have been submitted to the NCBI Sequence Read Archive (SRA; http://www.ncbi.

nlm.nih.gov/sra) under accession number SRP268535 (Col-0: SRR12077407; SRR12077408; SRR12077409, reca1why1why3:

SRR12077404; SRR12077405; SRR12077406).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Plant Materials and Growth Conditions
Arabidopsis thaliana ecotype Columbia-0 (Col-0) was used as the wild-type (WT, control).Arabidopsis thaliana ecotype Tibet-0 (Zeng

et al., 2017) and Landsberg erecta were also used in this study. The reca1why1why3 triple mutant (reca1-1: SALK_057982; why1:

SALK_099937; why3: W138*, the TGG codon 138 was changed to a TGA stop codon) was described previously (Zampini et al.,

2015). Cell cycle-related mutants smr7 (N628496) and reca1-1 (N666139), why1 (N599937), why3 (N667694), which are impaired

in factors involved in maintaining plastid genome stability. The sog1-1 and sog1-101 mutants were described previously (Ogita

et al., 2018). The gun5 mutant was described previously (Mochizuki et al., 2001). Homozygous lines were selected by PCR, and

gene expression was analyzed by qPCR; the primers used are listed in Table S1. The quadruple mutant smr7reca1why1why3 was

obtained through crossing the smr7 with the reca1why1why3 mutant. The method for genetic background of smr7reca1why1why3

mutants were confirmed as previous report (Lukowitz et al., 2000) (Figure S3D). Plants were grown in soil in a growth chamber under

100 mmol photons m�2 s�1, 12 h light/12 h dark photoperiod, 21�C and 60% relative humidity. For CIP and NOV treatments, plants

were grown on½MSmediumwith the respective reagent for 14 days. For H2O2 treatments, plants were grown on½MSmediumwith

the respective reagent for 7 days.

METHOD DETAILS

Seed per Silique Counts
Seed fertility analysis was performed as described previously (Kurzbauer et al., 2018). Mature but still green siliques originating from

the fifth to the thirtieth flower per stemwere harvested and incubated in 95% ethanol at room temperature for 1 to 3 days for destain-

ing. The ethanol was exchanged several times until the tissue was destained, and seeds inside the siliques were counted manually

under a dissection microscope.

Photosynthetic Parameter Measurements and Pigment Analysis
After 20 min of dark adaptation, chlorophyll fluorescence parameters were measured with the MAXI version of the Imaging-PAM

M-Series chlorophyll fluorescence system (Heinz-Walz Instruments), using the conditions described previously (Jin et al., 2014).

The Fo and Fm values were initially determined, followed by a 715 s delay, which was in turn followed by a 60 s actinic light treatment

(100 mmol photons m�2s�1) involving 36 saturation pulses (2,800 mmol photons m�2s�1) applied at 20 s intervals. Excitation pressure

was recorded to determine the maximum photochemical efficiency of PSII (Fv/Fm), NPQ, qP. Light-response curves ofFPSII and ETR

were determined at light intensities of 0, 81, 145, 186, 281, 335, 461, 701 and 926 mmol photons m�2s�1. The duration of illumination
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at individual light intensities was 3 min; after 3 min of illumination, a saturation pulse was applied. Chlorophyll was extracted from 25-

day-old plants using 80% acetone in 2.5 mM HEPES-KOH, pH 7.5, and chlorophyll levels were determined as described previously

(Lichtenthaler et al., 2013).

In Situ Detection of ROS
Hydrogen peroxide (H2O2) and superoxide (O2-) were detected using DAB and NBT staining, respectively, as previously described

(Kawai-Yamada et al., 2004; Vanacker et al., 2000). Whole plants were vacuum infiltrated in 0.1% NBT (in 10 mM potassium phos-

phate buffer, pH 7.8) or 5 mM DAB-HCl, pH 3.8. NBT staining was performed in the dark for 1 h at room temperature, and DAB was

incubated under growth light intensity conditions (100 mmol photons m�2 s�1) for 3 h. Stained leaves were boiled in acetic acid/glyc-

erol/ethanol (1:1:3 [v/v/v]) for 10 min. Plants grown under GL conditions were photographed with a camera.

Protoplasts were isolated from 14-day-old seedlings and stained with CM-H2DCFDA to detect ROS as described previously (Yao

and Greenberg, 2006). The signals were observed by confocal laser-scanning microscopy (Zeiss LSM 880). CFP signals were visu-

alized with excitation at 458 nm (emission: 475 nm), CM-H2DCFDA signals were visualized with excitation at 488 nm (emission: 525 to

535 nm), and chloroplast autofluorescence (488-nm excitation) was visualized at 738 to 793 nm.

Trypan Blue Staining
Trypan blue staining was performed as previously described (Liu et al., 2017), using 0.01% trypan blue solution prepared in lacto-

phenol solution (phenol/lactic acid/glycerol/water, 1:1:1:1, [v/v/v/v]). Leaves from 25-day-old plants were boiled in staining solution

for 10 min. After cooling, the leaves were destained in chloral hydrate solution (chloral hydrate/glycerol/water, 4:1:2, [m/v/v]). Images

were captured under a Zeiss stereomicroscope (SteREO Lumar.V12).

Comet Assay
Protoplasts from 14-day-old seedlings were used to perform the alkaline comet assay with a Comet Assay Kit from Trevigen

(CAT#4250-050-K). SYBR Gold from Life Technologies was used for comet staining. Comets were captured under a Zeiss LSM

880 confocal microscope with excitation/emission wavelengths of 488 nm/505 to 530 nm and analyzed using the Comet Assay Soft-

ware Project package.

qPCR and Detection of DNA Rearrangements by PCR
Total RNA was extracted from frozen Arabidopsis tissues or fresh rosette leaves using a RNeasy Plant Mini Kit (QIAGEN). RNA sam-

ples were reverse-transcribed into first-strand cDNA using a PrimeScript RT Reagent Kit (Takara). qPCR was performed using gene-

specific primers and SYBR Premix ExTaq reagent (Takara) on a real-time RT-PCR System (RoChe-LC480), according to the manu-

facturer’s instructions. Reactions were performed in triplicate for each sample, and gene expression levels were normalized to

ACTIN2. The primers used are listed in Table S1. To investigate DNA rearrangements, total DNA was isolated from the samples

via cetyl trimethylammonium bromide DNA extraction. DNA rearrangements were detected as described previously (Maréchal

et al., 2009). The primers used are listed in Table S1.

Scanning Electron Microscopy
The second pair of fresh leaves from 25-day-old plants was fixed in 5% (v/v) glutaraldehyde in PBS buffer, pH 7.4, dehydrated in ethyl

alcohol, and dried thoroughly in a CO2 Critical Point instrument. Epidermal cell was subjected to scanning electron microscopy

observation (Hitachi-3400N).

Differential Interference Contrast Light Microscopy
Fully formed but still green Col-0 and reca1why1why3 siliques were submerged in transparent buffer (chloral hydrate/gum arabic/wa-

ter/glycerol, 8:7.5:60:5, [m/m/v/v]) overnight until transparent. Subsequently, seedswere extracted from the siliques and observed by

Differential interference contrast (DIC) light microscopy (Olympus BX51). Images of seeds were obtained with a CCD camera.

Flow Cytometry
Nuclear DNA content was measured as described previously (Sliwinska et al., 2012). The second pair of leaves from 25-day-old

plants or 14-day-old seedlings was chopped in Galbraith buffer (45 mM MgCl2, 30 mM sodium citrate, 0.2% Triton X-100, 20 mM

MOPS, 1% PVP-40, 10 mM disodium EDTA dihydrate, and 2% [v/v] b-mercaptoethanol). The extracts were filtered through

48 nm nylon mesh, and released nuclei were stained with 5 mg ml�1 40,6-diamidino-2-phenylindole (DAPI; Sigma). Ploidy level in

20,000 isolated nuclei was measured by flow cytometry (MoFlo XDP), with a 355 nm UV laser (40 mW) and a 455 nm long-pass emis-

sion filter.

ChIP
Chromatin immunoprecipitation (ChIP) experiments were performed as previously described (Saleh et al., 2008) with some modifi-

cations: Briefly, 10 mL of reca1why1why3 or WT protoplasts was transfected with 35S:SOG1-Flag plasmids (10 mg). After 18 h,

the protoplasts were fixed in 1% (v/v) formaldehyde. Glycine was added to a final concentration of 0.125 M to titrate the remaining
e3 Cell Reports 32, 108019, August 11, 2020
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formaldehyde. Protoplasts were harvested by centrifugation at 100 g for 3 min and resuspended in SDS lysis buffer (50 mM Tris-HCl

at pH 7.5, 150 mM NaCl, 1 mM PMSF, 1 mM EDTA, 1% SDS, 1% [v/v] Triton X-100, and 0.1% sodium deoxycholate) following son-

ication. Anti-FLAG M2 affinity gel (Sigma-Aldrich) was used for each immunoprecipitation, and the enriched DNA fragments were

analyzed by qPCR using previously described primers listed in Table S1 (Weimer et al., 2016; Yi et al., 2014). The amount of DNA

recovered after ChIP was initially normalized to the total input DNA used for each immunoprecipitation. ChIP signals in reca1why1-

why3 were normalized to those in the WT, which was set to 1.

QUANTIFICATION AND STATISTICAL ANALYSIS

In this study, significant differences between two samples were determined with Two-tailed paired Student’s t test. Error bars repre-

sent standard error of mean, ‘n’ represents the sample size, as mentioned in the figure legends. And asterisks indicate the statistical

significance: *, p < 0.05; **, p < 0.01; ***, p < 0.001. At least three biological replicates were included. Statistical analysis was per-

formed by GraphPad Prism 6. Leaf area, cell area, cell number were analysis by ImageJ. Comet assay was analysis by CASP comet

assay software from http://casplab.com/.
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